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Abstract— In this paper, modelling of the energy level 
and outage analysis for battery-powered IoT sensor 
node with solar energy harvester is presented. The 
model considered the sensor node that goes through 
periodic cycles where in each cycle it goes through 
some states where it draws different amount of current 
and spends different amount of time.  The model focus  
is on sizing the battery and solar cell and determining 
how the size of the two components affect the daily 
energy level of the battery, the outage probability and 
the excess energy that are lost in the process. The daily 
solar irradiation dataset is obtained for the site with 
latitude of 5.05 and longitude of 7.90. The data was 
extracted from NASA website through the 
meteorological download tool in PVSyst software. 
Sample numerical example was implemented with 
sensor node that has cycle time of 576000 ms, duty 
cycle of 1 % and average current of 0.628806 mA. The 
results obtained when the yearly mean of daily solar 
irradiation value of 4704.6 Wh/m^2 per day was used 
to size the battery show that to ensure zero power 
outage the minimum days of autonomy required is 2.6 
days with a solar cell area of  3.9 𝒄𝒎𝟐 . Also, the 
required battery capacity is 56.3 mAh which will store 
2.7 Wh energy when fully charged. On the other hand, 
when the yearly minimum daily solar irradiation of 
593.0 Wh/m^2/day was used, the minimum days of 
autonomy required is about 0.8 days (less than one 
day) and the solar cell area of  9.7 𝒄𝒎𝟐  is required.  
The required battery capacity is 17.2 mAh which will 
store 0.9 Wh energy when fully charged. Generally, the 
results show that sizing with the mean solar irradiation 
value and using the minimum irradiation value affect 
the battery capacity and solar cell size; in the first case, 
larger battery capacity is required whereas in the 
second case, larger solar cell size is required. Also, the 
results show that it is possible to achieve zero power 
outage even when the battery capacity is less than the 
daily required capacity. 

Keywords — Outage Analysis, Solar Irradiation, Battery-
Powered, Solar Energy Harvester, IoT, Energy Level, 
Loss of Load 

1. Introduction 
The world today is rapidly perfecting the concept of global 
village were every one anywhere in the world can connect 
and interact [1,2,3,4,5,6,7]. However, beyond human 
connectivity, the advancement in electronic and 
communication technologies has led to the emergence of 
Internet of Things (IoT), whereby anything can be made to 
connect and interact with any other human or things. In 
this IoT world, sensors and wireless networks are key to 
facilitating the connectivity [8,9,10,11,12,14,15].  
Wireless network as a driver for IoT implementations has 
grown over the years and has extended from the terrestrial 
networks to satellite-to-earth and satellite-to-satellite 
communications [16,17, 18,19, 20,21, 22,23, 24,25, 26, 
27]. In all these diverse forms of wireless network 
implementations, there is need for adequate power supply 
for the various components of the communication system. 
At the transmitter, enough power is required to generate 
signal strength that can withstand the various propagation 
loss mechanisms that abound in the signal path 
[26,27,28,29,30,31,32,33,34,35,36]. Notably, the 
spreading loss, diffraction loss, multipath loss, 
atmospheric losses and other fade mechanisms are 
required to be accommodated in the wireless network 
design [37,38,39,40,41,42,43,44]. In view of this, the 
required transmitter power must produce transmitted 
signal strength that can transverse the signal path length 
and reach the receiver with sufficient signal strength that is 
above or at least equal to the receiver sensitivity 
[45,46,47,48,49,50,51,52,53,54,55]]. Also, in the bid to 
establish sensor-to-satellite communication link, adequate 
transmitter power is also required to generate the required 
signal strength for the long distance communication path 
[56,57,58,59,60].  
Furthermore, wireless sensor network which forms the 
bedrock of the IoT implementations rely mainly on 
resource constrained sensor nodes [61,62,63]. The sensor 
nodes are usually battery-powered and installed remotely 
where they have no access to the power grid 
[64.65,66,67,68,69,70]. In such cases, different energy 
harvesting approaches have been adopted to sustain the 
power supply for the sensor nodes. Among the different 
options, solar photovoltaic energy harvesting approach is 
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widely adopted [71,72,73,74,75,76,77,78,79,80]. In order 
to determine the appropriate size of the required battery 
capacity and solar cell for powering a sensor node detailed 
analysis is required. The focus in this paper is on providing 
mathematical models that can be used to conduct such 
analysis so as to determine the smallest sizes for the solar 
cell and battery capacity that will effectively power the 
sensor node without incurring power outage. This is 
because the sensor nodes are in most cases deployed in 
large numbers and any excess cost due to undue oversizing 
of the components will amount to huge sum of money in 
the overall network implementation. 

2. Methodology 

2.1 The Mathematical Model 

The model is presented for a single sensor node that goes 
through periodic cycles, with periodic time 𝑡௖௬௖௟. In each 
cycle, the sensor node goes through n states, where the 
states 1, 2, 3, . . . . , n-1 constitute the active part of the 
sensor node and state n is the sleep state. In each state, i , 
the sensor node draws current, 𝐼௜  for a time 𝑡௜ .  In most 
published works, apart from the sleep time of the sensor 
node, the time spent in the various states of the sensor 
nodes are given or determined from the sensor data 
specifications. The sleep state time, given in this paper as 
𝑡௡ is usually computed from the knowledge of the cycle 
time. In any case, sometimes, the cycle time is computed 
from the knowledge of duty cycle or the number of cycles 
the sensor goes through per day. As such, determination of 
the sleep time of the sensor node depends on what value is 
available. After the sleep time is computed, the average 
current, 𝑰𝒂𝒗𝒈 drawn by the sensor node in each cycle can 
then be computed. In this paper, three case are considered 
for the computation of the sensor node sleep time and 
allied parameters. 

Case I: when the periodic cycle time, 𝑡௖௬௖௟ is given, then, 
the sleep state time given as 𝑡௡, is computed as follows; 

𝑡௡ ൌ 𝑡௖௬௖௟ - ∑ ሺ𝑡௜ሻ
௜ୀ௡ିଵ
௜ୀଵ                   (1) 

The duty cycle, 𝑑௖௬௖௟ is given as; 

𝑑௖௬௖௟ ൌ ൬
∑ ሺ௧೔ሻ೔స೙షభ

೔సభ  

௧೎೤೎೗
൰ 100 %                   (2) 

The number of cycles per day or number of data capture 
by the sensor node in a day, 𝑛௖௬௣ௗ is given as; 

𝑛௖௬௣ௗ ൌ ൬
଼଺ସ଴଴ ௦௘௖௢௡ௗ௦/ௗ௔௬ 

௧೎೤೎೗ ௜௡ ௦௘௖௢௡ௗ௦
൰       (3) 

 

Case II: when the duty cycle, 𝑑௖௬௖௟ is given in % then; 

𝑡௖௬௖௟  ൌ ൬
∑ ሺ௧೔ሻ೔స೙షభ

೔సభ  

ௗ೎೤೎೗
൰ 100 %                   (4) 

Then, the 𝑡௡ can be computed from the value of 𝑡௖௬௖௟ using 
Eq1. 

 

Case III: when the number of cycles per day or number of 
data captured by the sensor node per day, 𝑛௖௬௣ௗ 
is given, then; 

𝑡௖௬௖௟  𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ൌ ൬
଼଺ସ଴଴ ௦௘௖௢௡ௗ௦/ௗ௔௬ 

௡೎೤೛೏
൰ (5) 

Again, the 𝑡௡  can be computed from the value of 𝑡௖௬௖௟ . 
Once, 𝑡௡  is obtained, the average current, 𝐼஺௩௚  drawn by 
the sensor node in each cycle is given as; 

𝐼஺௩௚ ൌ
∑ ൫ሺூ೔ሻሺ௧೔ሻ൯೔స೙

೔సభ

∑ ሺ௧೔ሻ೔స೙
೔సభ

                 (6) 

The required battery capacity denoted as  𝐶஻௔௧஽௨௧ that can 
power the sensor node without recharging for 𝐷஺௨௧  
number of days (𝐷௔௨௧  is the number of days of power 
autonomy) is given as;  

𝐶஻௔௧஽௔௨௧ ൌ
ଶସሺ஽ಲೠ೟ሻ ൫ூಲೡ೒൯ሺௌಳೌ೟ሻ

ሺ஼ೆಳೌ೟ሻሺ஼೅ಳೌ೟ሻሺȠ೎ಳೌ೟ሻ
                   (7) 

Where 𝑆஻௔௧  denote the battery sizing safety factor 
(typically 1.2), Ƞ௖஻௔௧  denote battery charger efficiency 
(typically 97 %), 𝐶௎஻௔௧  denote battery useable capacity 
factor (typically 90 %) and  𝐶்஻௔௧  denote the battery 
capacity temperature dependent factor (typically 95 %). 
Then, the battery capacity that can effectively supply 
energy to the sensor node for one day is 𝐶஻௔௧௉ௗ௔௬ where; 

𝐶஻௔௧௉ௗ௔௬ ൌ
஼ಳೌ೟ವೌೠ೟

஽ೌೠ೟
                   (8) 

The solar cell energy harvester area, 𝐴ௌ஼௘௟  required to 
charge the 𝐶஻௔௧஽௔௨௧  battery to full capacity in  𝑇୊୆ୟ୲ 
number of days is given as;  

𝐴ௌ஼௘௟ ൌ
 ாಹೌೝೡುವೌ೤

ீವಲೡ೒
                    (9) 

Where 𝐺஽஺௩௚  the yearly average of the daily solar 
irradiation of the study site and 𝐸ு௔௥௩௉஽௔௬  is the energy 
harvested per day by the solar cell such that in 𝑇୊୆ୟ୲ 
number of days the 𝐶஻௔௧஽௔௨௧ battery will be fully charged.  

𝐸ு௔௥௩௉஽௔௬ ൌ
ሺ஼ಳೌ೟ವೌೠ೟ሻሺ௏ೄ಴೐೗ሻሺௌೄ಴೐೗ሻ

ሺȠೄ಴೐೗ሻሺ்ూా౗౪ሻ
           (10) 

𝐸ு௔௥௩௉஽௔௬ ൌ ሺ𝐴ௌ஼௘௟ሻ൫𝐺஽஺௩௚൯                    (11) 

Where Ƞௌ஼௘௟ is the efficiency of the solar cell, 𝑉ௌ஼௘௟ is the 
terminal voltage of the solar cell and 𝑆ௌ஼௘௟  is the safety 
factor for sizing the solar cell (typically, 1.2). Hence, the 
energy required to fully charge the battery in 𝑇୊୆ୟ୲ number 
of days (that is energy required for full battery capacity) is 
denoted as 𝐸ு௔௥௩ி௨௟஻௔௧, where; 

𝐸ு௔௥௩ி௨௟஻௔௧ ൌ  𝐸ு௔௥௩௉஽௔௬ሺ𝑇୊୆ୟ୲ሻ            (12) 

Furthermore, the daily energy demand by the sensor node 
from the battery, 𝐸஽௠௔௡ௗ௉஽௔௬ is given as; 

𝐸஽௠௔௡ௗ௉஽௔௬ ൌ
ாಹೌೝೡಷೠ೗ಳೌ೟

஽ೌೠ೟
                    (13) 

Since the daily solar irradiation varies with time, in a year, 
the solar irradiation for day i is denoted as 𝐺஽௔௬ሺ௜ሻ , and 
then the energy harvested in day i is denoted as 
𝐸ு௔௥௩஽௔௬ሺ௜ሻ where; 
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𝐸ு௔௥௩஽௔௬ሺ௜ሻ ൌ ሺ𝐴ௌ஼௘௟ሻ൫𝐺஽௔௬ሺ௜ሻ൯          (14) 

The net daily energy, 𝐸ே௘௧஽௔௬ሺ௜ሻ in day i is given as; 

𝐸ே௘௧஽௔௬ሺ௜ሻ ൌ  𝐸ு௔௥௩஽௔௬ሺ௜ሻ െ 𝐸஽௠௔௡ௗ௉஽௔௬         (15) 

Let the energy stored in the battery in day i be denoted as 
𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ௜ሻ . The net energy in day i including the 
already stored energy in battery in the precious day is 
denoted as 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ, then; 

𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൌ 𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ௜ିଵሻ ൅ 𝐸ே௘௧஽௔௬ሺ௜ሻ          
  (16) 

𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൌ 𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ௜ିଵሻ ൅ 𝐸ு௔௥௩஽௔௬ሺ௜ሻ െ
𝐸஽௠௔௡ௗ௉஽௔௬            (17) 

If it is assumed that the battery is initially fully charged, 
then for i=1, 𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ௜ିଵሻ ൌ 𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ଴ሻ ൌ

 𝐸ு௔௥௩ி௨௟஻௔௧. On the other hand, if it is assumed that the 
battery is initially empty, then for i=1, 𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ௜ିଵሻ ൌ

𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ଴ሻ ൌ  0. Equally, the initial value 
𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ଴ሻ can be a fraction of the full charge value, 

such as; 

𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ଴ሻ ൌ 𝛼ሺ𝐸ு௔௥௩ி௨௟஻௔௧ሻ             (18) 

Where   0 ൑  𝛼 ൑ 1. The total energy stored in the battery 
at the end of day i denoted as 𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ௜ሻ  is computed 
as follows; 

𝐸஻௔௧ௌ௧௢௥஽௔௬ሺ௜ሻ ൌ
𝑚𝑎𝑥𝑖𝑚𝑢𝑚൫0, ൣ𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ൫𝐸ு௔௥௩ி௨௟஻௔௧, 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൯൧൯ 

   (19) 

Days of outage denoted as  𝑑௢௨௧௔௚௘ሺ௜ሻ  is determined by 
making 𝑑௢௨௧௔௚௘ሺ௜ሻ ൌ 1 if there will be partial or total 
outage in day i and 𝑑௢௨௧௔௚௘ሺ௜ሻ ൌ 0 if there will be no 
outage at all in day i. In this case,  

 𝑑௢௨௧௔௚௘ሺ௜ሻ ൌ

 ൜
ൌ 1   𝑖𝑓 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൏  0
ൌ 0  𝑖𝑓 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൒  0ൠ     (20) 

In some days, the battery is fully charged and more energy 
is generated than what can be stored in the battery. In such 
day, the excess energy will be wasted or lost. Days of 

unused energy denoted as  𝑑௎௡௨௦௘ாሺ௜ሻ  is determined by 
making 𝑑௎௡௨௦௘ாሺ௜ሻ ൌ 1 if 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൐  
𝐸ு௔௥௩ி௨௟஻௔௧ in day i and 𝑑௎௡௨௦௘ாሺ௜ሻ ൌ 0 if 
𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൑  𝐸ு௔௥௩ி௨௟஻௔௧ in day i. In this case,  

 𝑑௎௡௨௦௘ாሺ௜ሻ ൌ

 ൜
ൌ 1   𝑖𝑓 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൐  𝐸ு௔௥௩ி௨௟஻௔௧

ൌ 0  𝑖𝑓 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൑   𝐸ு௔௥௩ி௨௟஻௔௧
ൠ     (21) 

The unused energy denoted as  𝐸௎௡௨௦௘ாሺ௜ሻ is given as; 

𝐸௎௡௨௦௘ாሺ௜ሻ ൌ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ൫𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ െ
 𝐸ு௔௥௩ி௨௟஻௔௧൯     (22) 

In some days, there is excess energy above the daily 
energy demand but all the excess energy are stored in the 
battery; no energy is lost or unused. In such day, there is 
no power outage and there is no power loss or unused 
power. Let such day of no power loss and no power outage 
be denoted as 𝑑ே௅௢௦௦ேை௨௧௔௚௘ሺ௜ሻ  and it is determined by 
making 𝑑ே௅௢௦௦ேை௨௧௔௚௘ሺ௜ሻ ൌ 1 if  0 ൏ 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൑  
𝐸ு௔௥௩ி௨௟஻௔௧ in day i and 𝑑ே௅௢௦௦ேை௨௧௔௚௘ሺ௜ሻ ൌ 0 if 
𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൏ 0   or 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൐ 𝐸ு௔௥௩ி௨௟஻௔௧ 
in day i. In this case,  

 𝑑ே௅௢௦௦ேை௨௧௔௚௘ሺ௜ሻ  ൌ

 ൜
ൌ 1   𝑖𝑓 0 ൏ 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൑   𝐸ு௔௥௩ி௨௟஻௔௧                                       
ൌ 0  𝑖𝑓 𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൏ 0   or  𝐸ே௘௧௉௟௨௦஻௔௧஽௔௬ሺ௜ሻ ൐ 𝐸ு௔௥௩ி௨௟஻௔௧

(23) 

 

2.2  The daily solar irradiation dataset 

The daily solar irradiation dataset that is used in this paper 
is obtained for site with latitude of 5.05 and longitude of 
7.90. The data was extracted from NASA website through 
the meteorological download tool in PVSyst software. The 
monthly average of daily solar irradiation on the horizontal 
plane is shown in the bar chart of Figure 1 while the 
scatter plot of the daily average solar irradiation on the 
horizontal plane for the 365 days in a year is shown in 
Figure 2. 
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Figure 1 The monthly average of daily solar irradiation on the horizontal plane 

 

 

Figure 2 The daily average solar irradiation on the horizontal plane for the 365 days in a year 

 

 

3. Results and discussions 

Sample numerical examples showing the applicability of 
the mathematical model for the IoT sensor node energy 
level and power outage analysis is implemented with the 
solar irradiation data shown in Figure 2  with yearly mean 
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of daily value of 4704.6 Wh/m^2 per day.  Two sets of 
implementations are presented based on the given dataset. 
The two implementations are conducted with the dataset in 
Table 1 which shows a sensor node with cycle time of 
576000 ms, duty cycle of 1 % and average current of 
0.628806 mA. The results showing the key parameter for 
the first case of sizing the battery and solar cell based on 
the yearly mean of daily solar irradiation is shown in Table 
2.  The results show that with the yearly mean daily solar 
irradiation of 4704.6Wh/m^2/day and specified 1.5 days 
required to fully charge the battery that will ensure zero 
power outage (that is no loss of load), the minimum days 
of autonomy required is about 2.6 days and the solar cell 
size that can be used to achieve that has an area of 3.9 
𝑐𝑚ଶ.  The required battery capacity is 56.3 mAh which 
will store 2.7 Wh energy when fully charged. However, 
the daily required battery capacity is 22.8 mAh and the 
daily energy demand is 1.1 Wh. The number of days of 
excess energy is unused or lost is 305 days per year and 
the number of  days of excess energy is completely stored 
60 days per year.  

 
The results showing the key parameter for the second case 
of sizing the battery and solar cell based on the yearly 
minimum of daily solar irradiation is shown in Figure 5 
and Figure 6 while Table 3 where the comparison of the 
results showing the key parameter for the two s of sizing 
the battery and solar cell based on the yearly mean and 
yearly minimum of daily solar irradiation are presented.  

The results in Figure 5, Figure 6 and Table 3 show that the 
yearly minimum daily solar irradiation of 593.0 
Wh/m^2/day. In this case, the minimum days of autonomy 
required is about 0.8  days (less than one day) and the solar 
cell size that can be used to achieve that has an area of 9.7 
𝑐𝑚ଶ.  The required battery capacity is 17.2 mAh which 
will store 0.9 Wh energy when fully charged. The daily 
required battery capacity is 22.8 mAh and the daily energy 
demand is 1.1 Wh. In this case, it is seen that the daily 
energy demand of the sensor node is quite higher than the 
energy storage capacity of the battery. In any case, due to 
the fact that the minimum solar irradiation data value is 
used in sizing the solar cell in this case, the energy 
harvested in each day is relative high enough to supply the 
daily energy need of the sensor node and also to replenish 
the energy drawn from the battery. 
In all, it is seen that between the first and the second case, 
the solar cell size and the battery capacity are significantly 
affected. In the second case where the sizing of the battery 
and solar cell was done using the annual minimum solar 
irradiation data of 593.0 Wh/m^2/day, the battery capacity 
is 69.4%  lower than that of case  I where  the annual mean 
value of 4704.6Wh/m^2/day was used. On the other hand, 
the solar cell size in the case II is 148.7 % higher  than  that 
of case one.  In any case,  in both cases zero power outage 
is achieved. However, the choice of which option to use 
depends on the relative cost of the battery and solar cell. 

 

Table 1  The results of the energy level and outage analysis for the case of 2.5774105 days of autonomy with 1.5 days 
required to fully charge the battery 

S/N  Parameter  Value  S/N  Parameter  Value 

1 
 Transmit  current 

(mA)  83  7   Measure time (ms)  260 

2  Receive  current (mA)  32 8 Sleep  time (ms) 570240 

3 
 Measure current 

(mA)  18  9   Cycle time (s)  576000 

4   Sleep current (mA)  0.05  10  Duty Cycle (%)  1 

5  Transmit time (ms)  3000  11 
Number of cycles per 

day  150 

6  Receive time (ms)  2500  12  Average Current, (mA)  0.628806 

 

Table 2 The results showing the key parameter for the case of sizing the battery and solar cell based on the yearly mean 
of daily solar irradiation.  

 

S/N  Parameter 

Results for 
Sizing with the 

annual mean solar 
irradiation value 

S/N  Parameter 

Results for
Sizing with the 
annual mean 

solar 
irradiation 

value 

1 
Average daily solar 

irradiation 
(Wh/m^2/day) 

4704.6  8  Daily energy demand 
(Wh) 

1.1 

2 
Days of autonomy   

2.6  9 
Number of days of 
power outage  

0.0 
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3 
Days it take to fully 
charge the battery  

1.5  10 
Percentage of days of 
power outage (%) 

0.0 

4 
Required battery 

capacity  (mAh) at full 
charge 

56.3  11 
Number of  days of 
excess energy is 
unused or lost  

305.0 

5 

Required battery 
capacity  (mAh) at daily 

energy demand of 
sensor (mAh) 

22.8 
 

12 
Percentage of days 
excess energy is 
unused or lost (%) 

83.6 

6 

Solar cell size (𝑐𝑚ଶ^2) 

3.9  13 
Number of  days of 
excess energy is 
completely stored 

60.0 

7  Energy store in fully 
charged  battery (Wh) 

2.7  14 
Percentage   of days 
excess energy is 

completely stored (%) 

16.4 
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Figure 3 The net energy generated in  day i  and the daily energy demand, both in Wh for the case I: sizing the battery 
and solar cell based on the yearly mean of daily solar irradiation. 
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Figure 4 Daily 
energy stored in 
the battery and 

daily energy 
demand, both in 
Wh for the case 

I: sizing the 
battery and solar 
cell based on the 
yearly mean of 

daily solar 
irradiation. 
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Figure 5 The net energy generated in  day i  and the daily energy demand, both in Wh for the case II sizing the battery 
and solar cell based on the yearly minimum of daily solar irradiation. 
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Figure 6 Daily energy stored in the battery and daily energy demand, both in Wh for the case II sizing the battery and 
solar cell based on the yearly minimum of daily solar irradiation. 

 

Table 3 Comparison of the results showing the key parameter for the two s of sizing the battery and solar cell based 
on the yearly mean and yearly minimum of daily solar irradiation.  

S/N  Parameter 

Results for  
Sizing with the annual mean 

solar irradiation value 

Results for  
Sizing with the annual 

minimum solar 
irradiation value 

Percentage 
Change in 
value (%) 

1 
Average daily solar irradiation 

(Wh/m^2/day) 
4704.6  593.0  ‐87.4 

2  Days of autonomy    2.6  0.8  ‐69.4 

3  Days it take to fully charge the 
battery  

1.5  1.5  0.0 

4 
Required battery capacity  (mAh) at 

full charge 
56.3  17.2  ‐69.4 

5 
Required battery capacity  (mAh) at 

daily energy demand of sensor 
(mAh) 

22.8 
 

22.8  
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6  Solar cell size (𝑐𝑚ଶ^2)  3.9  9.7  148.7 

7  Energy store in fully charged  battery 
(Wh) 

2.7  0.9  ‐68.4 

8  Daily energy demand (Wh)  1.1  1.1  3.2 

9 
Number of days of power outage  

0.0  0.0  0.0 

10  Percentage of days of power outage 
(%) 

0.0  0.0  0.0 

11  Number of  days of excess energy is 
unused or lost  

305.0  356.0  16.7 

12  Percentage of days excess energy is 
unused or lost (%) 

83.6  97.5  16.7 

13 
Number of  days of excess energy is 

completely stored 
60.0  9.0  ‐85.0 

14 
Percentage   of days excess energy is 

completely stored (%) 
16.4  2.5  ‐85.0 

4. Conclusion 
The model for analyzing the variations in the daily energy 
level of a single sensor node that is powered with a battery 
and has solar cell for energy harvesting to charge the 
battery is presented. The model considered the sensor node 
that goes through periodic cycles where in each cycle it 
goes through some states where it draws different amount 
of current and spends different amount of time.  In this 
paper, the emphasis is on sizing the battery and solar cell 
and determining how the size of the two components affect 
the daily energy level of the battery, the outage probability 
and the excess energy that are lost in the process. The 
mathematical models were applied to a case study data 
using a 365 days daily solar radiation data of a case study 
site.  The results show that sizing with the mean solar 
irradiation value and using the minimum irradiation value 
affect the battery capacity and solar cell size; in the first 
case, larger battery capacity is required whereas in the 
second case, larger solar cell size is required. Also, the 
results show that it is possible to achieve zero power 
outage even when the battery capacity is less than the daily 
required capacity. 
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